Mass, Gas and Galaxies in the Abell 901/902 Supercluster

Catherine Heymans
on behalf of the STAGES collaboration
(Pl: Meghan Gray)

University of British Columbia, Vancouver.

Canadian Institute for Theoretical Astrophysics, Toronto.

Institute d'Astrophysique de Paris.

STAGES

- 80 orbit mosaic
- ACS + WFPC2/NIC3 parallels
- science exploitation underway
- second largest HST mosaic
- sister survey to GEMS/ CDFS
- Data public 20th Feb 2008!

Abell 901/902 Supercluster Dark Matter Map • STAGES
Hubble Space Telescope • ACS/WFC

Outline

- * The STAGES survey
 - Galaxy evolution in dense environments
- * "Seeing the invisible": mapping the dark matter environment of Abell 901/902
 - Weak gravitational lensing
- * First galaxy evolution results from the Abell 901/902 laboratory

Catherine Heymans LBL 22nd Jan 2008

COMBO-17

- * 5 broad band + 12 narrow band filters
- Photometric redshifts to R<24, accuracy ~0.02</p>
- Clean selection of supercluster galaxies
 (3%/15% contamination)
- * Spectral Energy
 Distributions; age, dust,
 metalicity
- * Star formation history
- * Stellar mass estimate

STAGES: Space Telescope A901/902 Galaxy Evolution Survey

	Hubble Space Telescope (M.E Gray)	80 orbit mosaic; ACS, NICMOS, WFPC morphologies, weak gravitational lensing
20 00 200 200 200 200 200	COMBO-17 survey (C. Wolf)	17-band optical imaging: photo-zs + SEDs for 15000 objects
	Omega2000 @ Calar Alto (K. Meisenheimer)	near-infrared extension (Y, J1, J2, H): M*, photo-zs
2dF	2dF spectrograph (M. E. Gray)	spectroscopy of ~300 cluster galaxies: dynamics, star-formation histories
	XMM-Newton (R. Gilmour)	90 ks X-ray imaging/spectroscopy: ICM, AGN
	Spitzer (E. F. Bell)	infrared imaging (8 and 24 μm): obscured star formation, AGN
200	GALEX (GALEX team)	NUV + FUV imaging: unobscured star formation
À À	GMRT (D. Green)	radio imaging (610 and 1400MHz) obscured SF, AGN
	constrained simulations (E. van Kampen)	N-body + hydro + semi-analytic models dark matter, gas, galaxies

What physical mechanism drives galaxy evolution in dense environments?

Massive ellipticals live in cluster cores

Spirals, typically live in the outskirts of the supercluster

I: Galaxy-cluster gravitational interations:

z=0.500

LSB galaxy

Zoom in: Side on view

Zoom in: Face on view

Galaxy Harassment movie: The evolution of a low surface brightness galaxy as it falls into a cluster (Moore et al 1998)

2: Galaxy-cluster gas interations:

t=0.00

Ram pressure stripping: The turbulent history of a spiral galaxy as it falls through the hot ICM of a rich galaxy cluster (Quilis et al).

What physical mechanism drives galaxy evolution in dense environments?

- I. Galaxy-cluster gas interactions
 - ram-pressure stripping
- 2. Galaxy-cluster gravitational interactions
 - tidal truncation of galaxy dark matter halos
- 3. Galaxy-galaxy interactions
 - mergers (low-speed interactions)
 - galaxy harrassment (high-speed interactions)

Any hope of disentangling these effects requires knowledge of the environment; in terms of mass, gas and galaxies.

Seeing the invisible

- Distant galaxies

Matter

Dark Matter

We can use the 'lensing' signature of dark matter to tell us where is it and how much if it there is.

How to make a dark matter map

- 1. Obtain deep high resolution imaging.
- 2. Measure the ellipticities of distant galaxies.
- 3. Account for all artifical sources of shear (eg instrumental distortions) that are typically more than an order of magnitude larger than the signal you're trying to detect (see STEP).
- 4. Directly from GR you can relate the measured shear to the projected mass.

$$e_i = e_i^{source} + \gamma_i$$

$$\langle e_i^{\text{source}} \rangle = 0$$

$$\gamma \approx$$

130kpc resolution at supercluster redshift z=0.165 ∞ from 80 orbits of HST Dark Matter_ A901a A9016 κ ~A902 SW group

149.3 149.2 149.1 149 148.9 Contours show $2\sigma, 4\sigma, 6\sigma$ detections RA Heymans et al 2008

Lensing only produces Emode distortions

RA

$$M = 6.1 \pm 0.8 h^{-1} 10^{13} M_{\odot}$$
 $M/L = 131 \pm 16 h M_{\odot}/L_{\odot}$
 $M/M* = 32 \pm 4$

Infalling X-ray group A901 α

A901a

Dark Matter density

ACS HST image

Catherine Heymans

LBL 22nd Jan 2008

A901b: the most massive and X-ray rich of the four clusters

$$M = 6.5 \pm 1.3 h^{-1} 10^{13} M_{\odot}$$
 $M/L = 165 \pm 33 h M_{\odot}/L_{\odot}$
 $M/M* = 42 \pm 8$

Dark Matter map resolves substructure

ACS HST image

Dark Matter density

A902 has two peaks in the dark matter distribution that are matched by two BCGs

$$M = 3.3 \pm 0.8 h^{-1} 10^{13} M_{\odot}$$
 $M/L = 108 \pm 25 h M_{\odot}/L_{\odot}$
 $M/M* = 28 \pm 6$

CBI z=0.46

ACS HST image

Dark Matter density

 $M = 3.8 \pm 0.5 h^{-1} 10^{13} M_{\odot}$ $M/L = 176 \pm 24 \mathrm{h} M_{\odot}/L_{\odot}$ SW group $M/M* = 41 \pm 6$ ACS HST image Dark Matter density LBL 22nd Jan 2008 Catherine Heymans

Mass and Light A901b A901a A902 SWgroup $M/L \sim 100h^{-1}M_{\odot}/L_{\odot}$

Mass to stellar mass ratio

Why Hubble? ground-based

Why Hubble? **STAGES**

answer: image quality and resolution allows us to detect the weak dark matter signature

Future telescopes in space: a quick note about depth

* It's not just about image quality.

* For high resolution dark matter maps, you need depth

$$\gamma \approx \langle e \rangle$$

* A smaller class telescope such as DUNE will need to observe much longer than SNAP to obtain deep enough data for simlarly high resolution observations

SNAP ~2m

STAGES: Space Telescope A901/902 Galaxy Evolution Survey

- * The lensing map is one key piece of a bigger puzzle
- * The larger picture looks at the link between galaxies and environment: nature vs nurture?
- * Looking at the A901/902 with multi-wavelength eyes we have assembled an ideal laboratory for studying galaxy evolution
- We are finding that it is the outskirts of the cluster where galaxy transformations are occurring

STAGES: a laboratory for studying galaxy evolution and environment

"environment"

"galaxies"

- strangulation
- stripping
- tidal truncation
- merging

We need multiwavelength observations in order to get a full census of the supercluster.

Anatomy of a supercluster: a complex environment

Galaxies

Step I: map out the environment

X-ray imaging:

Gilmour et al 2007

Step 2: understand the galaxies

Galaxy Classification

A large population of anemic spirals/dusty red galaxies

early-type

A population of dusty red star forming galaxies make up 30% of the cluster red sequence

late-type

Step 3: connect galaxies and environment

1 Mpc A901b A901a 😘 A902 SW Group

it is the intermediate density or infall regions where most of the signatures of galaxy transformation are seen.

- Major merger/interaction
- ♦ Minor merger/interaction
- Major or minor merger/interaction

What causes galaxy evolution in dense environments? Preliminary conclusions:

- * It's not the gas
- * It's not high galaxy densities
- * The action seems to be where galaxies are first experiencing the pull of dark matter
- * Our first findings are showing a sweet-spot where galaxies become close enough, and are moving slow enough to interact and transform.

Summary

- * STAGES is a multi-wavelength survey of the Abell 901/902 supercluster.
- * The survey aims to distinguish between the different physical mechanisms which drive galaxy evolution in dense environments.
- * Weak lensing analysis of HST images permits high resolution dark matter "observations".
- * Old Red Galaxies trace the underlying dark matter distribution
- * Intermediate density regions key site for galaxy transformations
- * Current work bringing together all different multi-wavelength cluster information to form a coherent understanding of the violent history of this supercluster